Tips for Deep Learning

Do not always blame Overfitting

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

Hard to get the power of Deep ...

Vanishing Gradient Problem

Vanishing Gradient Problem

Intuitive way to compute the derivatives ...

$$\frac{\partial l}{\partial w} = ? \frac{\Delta l}{\Delta w}$$

ReLU

• Rectified Linear Unit (ReLU)

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases

4. Vanishing gradient problem

α also learned by gradient descent

ReLU is a special cases of Maxout

• Learnable activation function [Ian J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

Maxout

- Learnable activation function [Ian J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

Maxout - Training

 Given a training data x, we know which z would be the max

Maxout - Training

 Given a training data x, we know which z would be the max

• Train this thin and linear network

Different thin and linear network for different examples

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Use first derivative to estimate second derivative

RMSProp

Error Surface can be very complex when training NN.

$$\begin{aligned} \mathsf{RMSProp} \\ w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} & \sigma^{0} = g^{0} \\ w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} & \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}} \\ w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} & \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}} \\ \vdots \\ w^{t+1} \leftarrow w^{t} - \frac{\eta}{\sigma^{t}} g^{t} & \sigma^{t} = \sqrt{\alpha(\sigma^{t-1})^{2} + (1 - \alpha)(g^{t})^{2}} \end{aligned}$$

Root Mean Square of the gradients with previous gradients being decayed

Hard to find optimal network parameters

The value of a network parameter w

In physical world

Momentum

How about put this phenomenon in gradient descent?

Review: Vanilla Gradient Descent

Momentum

Movement: movement of last step minus gradient at present

Start at point θ^0 Movement v⁰=0 Compute gradient at θ^0 Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ Move to $\theta^1 = \theta^0 + v^1$ Compute gradient at θ^1 Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.

Momentum

Movement: movement of last step minus gradient at present

vⁱ is actually the weighted sum of all the previous gradient: $\nabla L(\theta^0), \nabla L(\theta^1), \dots \nabla L(\theta^{i-1})$

 $v^0 = 0$

v¹ = - η
$$\nabla L(\theta^0)$$

v² = - λ η $\nabla L(\theta^0)$ - η $\nabla L(\theta^1)$

Start at point θ^0 Movement $v^0=0$ Compute gradient at θ^0 Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ Move to $\theta^1 = \theta^0 + v^1$ Compute gradient at θ^1 Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ Move to $\theta^2 = \theta^1 + v^2$ Movement not just based

on gradient, but previous movement

Momentum

Still not guarantee reaching global minima, but give some hope

Adam

RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) \rightarrow for momentum $v_0 \leftarrow 0$ (Initialize 2nd moment vector) ➤ for RMSprop $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-whenthe-validation-loss-isnt-decreasing-anymore

Regularization

- New loss function to be minimized
 - Find a set of weight not only minimizing original cost but also close to zero

$$L'(\theta) = \underline{L(\theta)} + \lambda \frac{1}{2} \|\theta\|_{2} \rightarrow \text{Regularization term}$$
$$\theta = \{w_{1}, w_{2}, ...\}$$

Original loss (e.g. minimize square error, cross entropy ...) L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

(usually not consider biases)

Regularization $\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$

New loss function to be minimized

 $L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2 \quad \text{Gradient:} \quad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$ Update: $w^{t+1} \rightarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda w^t \right)$ $= (1 - \eta \lambda) w^t - \eta \frac{\partial L}{\partial w}$ Weight Decay **Closer to zero**

Regularization

L1 regularization:

$$\|\theta\|_1 = |w_1| + |w_2| + \dots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_{1} \qquad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w)$$

Update:
$$w^{t+1} \to w^{t} - \eta \frac{\partial L'}{\partial w} = w^{t} - \eta \left(\frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w^{t})\right)$$
$$= w^{t} - \eta \frac{\partial L}{\partial w} - \underline{\eta \lambda} \operatorname{sgn}(w^{t}) \text{ Always delete}$$
$$= (1 - \eta \lambda) w^{t} - \eta \frac{\partial L}{\partial w} \quad \dots \quad L2$$

Regularization - Weight Decay

Our brain prunes out the useless link between neurons.

Doing the same thing to machine's brain improves the performance.

Source: Rethinking the Brain, Families and Work Institute, Rima Shore, 1997; Founders Network slide

- > Each time before updating the parameters
 - Each neuron has p% to dropout

- Each time before updating the parameters
 - Each neuron has p% to dropout

The structure of the network is changed.

Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%, all the weights times 1-p%
- Assume that the dropout rate is 50%.
 If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

No dropout

Dropout (腳上綁重物)

Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Dropout is a kind of ensemble.

Ensemble

Dropout is a kind of ensemble.

Using one mini-batch to train one network
 Some parameters in the network are shared

Dropout is a kind of ensemble.

Testing of Dropout

 $z = w_1 x_1 + w_2 x_2$

Try another task

In [8]: x_train.shape
Out[8]: (8982, 1000)
In [9]: y_train.shape
Out[9]: (8982, 46)

In [12]: x	train[[0]											
Out[12]:								In	[10]: x	_test	:.shap	e
array([0.,	1.,	1.,	0.,	1.,	1.,	1.,	1.,	10u	t[10]: (2246,	1000)
0.,	0.,	1.,	1.,	1.,	0.,	1.,	0.,	0					
1.,	0.,	0.,	1.,	1.,	0.,	1.,	0.,	⁰ Tn	[11	1: v	test		e
1.,	0.,	0.,	0.,	1.,	1.,	0.,	0.,	0	+ 111	····.	2246	46)	
1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	000		J • (•	2290,		
0.,	0.,	1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	
0.,	0.,	0.,	0.,	0.,	1.,	1.,	0.,	0.,	0.,	0.,	1.,	1.,	
0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	1.,	0.,	
0.,	0.,	0.,	0.,	0.,	⊥., ^	0.,	⊥., ₁	0.,	0.,	0.,	0.,	0.,	
0.,	0.,	U., 1	0.,	U., 1	0.,	0.,	⊥., 0	0.,	0.,	0.,	0.,	0.,	
0.,	0.,	⊥., 0	0.,	⊥• ,	0.,	0.,	0.,	U., 1	0.,	0.,	0., 1	U., 1	
0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	··,	0.,	0.,	··,	··,	
0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	
0.,	0.,	0.,	0.,	1	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	
0.,	0.,	1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	1	
0.,	1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	
0	0	0	0	0	0	0	0	0	0	0	0	0.	
In [13]: y_ Out[13]:	train[0]											
array([0.,	0.,	0.,	1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., Ο., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) 0., 0., 0., 0.,

Live Demo